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Using RNA sample titrations to assess 
microarray platform performance and 
normalization techniques
Richard Shippy1, Stephanie Fulmer-Smentek2, Roderick V Jensen3, Wendell D Jones4, Paul K Wolber2, 
Charles D Johnson5, P Scott Pine6, Cecilie Boysen7, Xu Guo8, Eugene Chudin9, Yongming Andrew Sun10, 
James C Willey11, Jean Thierry-Mieg12, Danielle Thierry-Mieg12, Robert A Setterquist13, Mike Wilson5, 
Anne Bergstrom Lucas2, Natalia Novoradovskaya14, Adam Papallo3, Yaron Turpaz8, Shawn C Baker9, 
Janet A Warrington8, Leming Shi15 & Damir Herman12

We have assessed the utility of RNA titration samples for 
evaluating microarray platform performance and the impact 
of different normalization methods on the results obtained. As 
part of the MicroArray Quality Control project, we investigated 
the performance of five commercial microarray platforms using 
two independent RNA samples and two titration mixtures of 
these samples. Focusing on 12,091 genes common across 
all platforms, we determined the ability of each platform 
to detect the correct titration response across the samples. 
Global deviations from the response predicted by the titration 
ratios were observed. These differences could be explained by 
variations in relative amounts of messenger RNA as a fraction of 
total RNA between the two independent samples. Overall, both 
the qualitative and quantitative correspondence across platforms 
was high. In summary, titration samples may be regarded as 
a valuable tool, not only for assessing microarray platform 
performance and different analysis methods, but also for 
determining some underlying biological features of the samples.

Microarrays are widely used to simultaneously measure the levels of 
thousands of RNA targets in a biological sample. Despite their wide-
spread use, many in the community are concerned with the compara-
bility of the results obtained using different microarray platforms and 
thus the biological relevance of the qualitative and quantitative results 
obtained. Microarray platform performance has been evaluated before 
on the criteria of sensitivity, specificity, dynamic range, precision and 
accuracy1–12. As part of the MicroArray Quality Control (MAQC) proj-
ect, similar assessments have also been reported13,14. Other studies have 
used defined mixtures of RNA samples (titration samples) for interplat-
form2,15 and interlaboratory15 comparisons. Here we have investigated 
an alternative performance metric: the abilities of different microar-
ray platforms to accurately detect a signal trend produced by mixing 
samples (titration trend) and the effects of normalization and other data 
analysis practices on this performance characteristic. Gene-expression 
levels were measured for two pure samples and two mixtures using five 
different commercial whole-genome platforms at three different test 
sites per platform. The five commercially available whole-genome plat-
forms tested were Applied Biosystems (ABI), Affymetrix (AFX), Agilent 
Technologies (AG1), GE Healthcare (GEH) and Illumina (ILM). The 
level of accurate titration response was quantified by determining the 
number of probes for which the average signal response in the titration 
samples was consistent with the response in the independent, reference 
RNA samples. We analyzed every platform at each site, and here we pres-
ent comparisons of the various platforms using various data processing 
and normalization techniques.

To assess the titration response of as many genes as possible, an a 
priori expectation of differential expression of many transcripts was 
necessary. On the basis of results from pilot titration studies (data not 
shown), we elected to use two independent samples (A, Stratagene 
Universal RNA, and B, Ambion Human Brain RNA) that showed large, 
statistically significant differences in expression for a large number of 
transcripts to generate the two titration samples (C and D, consisting of 
3:1 and 1:3 ratios of A to B, respectively; see Fig. 1). We defined the series 
of mean signals generated by a gene on a microarray platform across 
these samples as its titration response. For these analyses, we assumed 
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that the expression measurement of a transcript in a titration sample 
follows a linear titration relationship: the signal of any given transcript 
in the two titration samples should be a linear combination of the signals 
produced by the two independent samples. From the signal intensities 
in the microarray titration experiments, we obtained the percentage of 
genes on each platform that showed a monotonic titration response and 
analyzed that percentage as a function of the magnitude of differential 
expression between A and B or as a function of the signal intensity.

Many normalization methods have been developed that are commonly 
used for different microarray platforms16–24, including those methods 
that have been recommended by the array manufacturers for the MAQC 
project13 (see Methods). Differences in these methods significantly influ-
ence several aspects of microarray performance, including precision and 
sensitivity9,16–20,23,24. However, no clear consensus exists in the microarray 
community as to which method is best under a given set of circumstances. 
The optimal normalization or scaling methods for a given dataset may 
depend both on the experiment and on many attributes of that microar-
ray dataset, including signal distribution and noise characteristics25. The 
experimental design used here is valuable for assessing the influence of 
different data processing techniques on the self-consistency of microar-
ray data with regard to titration response. In addition, the different data 
processing techniques were also analyzed with respect to their impact on 
the statistical power of these platforms to distinguish between the inde-
pendent and titration samples. The titration analysis presented here was 
applied to all commercial whole-genome microarray platforms tested in 
the MAQC project13, using various data processing techniques, to evaluate 
the self-consistency and statistical power of the resulting data.

When assessing accuracy in experimental systems, the goal is to 
compare observed results to the expected ‘true’ values of the system. 
For most experiments measuring gene expression, the ‘true’ values are 
either unknown or difficult to measure independently. However, the 
titration response results presented here can provide some quantitative 
information about the relative accuracy of measurements of differential 
gene expression. Monotonicity in the titration response indicates a self-
consistent relationship among the expression measurements from the 
four samples. Because many inferences drawn from microarray experi-
ments depend as much or more on the direction of expression changes 

as on their magnitudes, the consistency with which microarray assays 
determine direction of change is an important performance character-
istic. The main advantages of our method are that titration responses 
can be assessed on a large scale, independent of a designated reference 
platform, and that it does not require substantial assumptions to be 
made about the data2,25.

RESULTS
The experimental design of the main MAQC study is described in detail 
elsewhere13. Briefly, two independent RNA samples were chosen for 
study and used to generate two titration samples. The gene-expression 
profiles of these samples, all split from a single pool, were measured 
on ten gene-expression measurement platforms. For each of the five 
whole-genome microarray platforms examined in this study, the sam-
ples were analyzed at three different test sites, each with ≤5 replicate 
assays per sample, for a total of 293 microarray hybridizations at 15 
different sites. Data from all platforms were then processed using the 
recommended method from each array manufacturer, as represented in 
the main MAQC paper13, as well as one or more alternative normaliza-
tion methods.

Using probe sequence information, we identified 12,091 genes that 
were uniquely targeted by at least one probe for all five commercial 
whole-genome microarray platforms. For each platform, only the probe 
closest to the 3′ end of the gene was considered13. We chose to exclude 
genes that were not detected across all samples and focused on genes 
whose signals were above the noise level and therefore more reliable10. 
Each manufacturer provided quantitative detection calls characterizing 
the probability that a gene was detected in a given replicate13. For most 
analyses, only genes detected in at least three replicates for a given sample 
and site were considered. This detection-call protocol is the same as 
described in the main MAQC paper13.

Measuring titration response as a function of fold change
The chief advantage of an experiment that evaluates gene expression 
in a series of known mixtures of two samples is that the rank order of 
measured expression levels of any given gene across the series can be 
predicted from the relative expression levels in the two original sam-
ples. For the series described in this paper, if the true expression level 
(Ai) of any gene i in sample A is greater than the true expression level 
(Bi) of the same gene i in sample B, then Ai > Ci > Di > Bi, where Ci 
and Di are the true expression levels of gene i in samples C and D. If 
Bi > Ai, then Bi > Di > Ci > Ai. In our case, if we postulate Ai > Bi on the 
basis of the observed sample mean of Ai (

–
Ai) being significantly larger 

(P < 0.001) than the observed sample mean of Bi (
–
Bi), then we expect 

–
Ai > 

–
Ci > 

–
Di > 

–
Bi. Finally, if Ai ≈ Bi, then the order of observed means 

will be nearly random.
In Figure 2, the percentage of genes in a 100-gene moving window 

that produce the expected titration response for each site and platform 
is plotted as a function of the average 

–
Ai / 

–
Bi ratio of those 100 genes, 

when 
–
Ai > 

–
Bi (left side of graph), or of the 

–
Bi / 

–
Ai ratio, when 

–
Bi > 

–
Ai (right 

side of graph). The x-axis origin of these graphs is at 
–
Ai / 

–
Bi = 

–
Bi / 

–
Ai = 1, 

the ratio at which the titration response changes direction. The overall 
shapes of all of the curves are similar: as expected from theory, they rise 
from a value near zero at 

–
Ai / 

–
Bi = 

–
Bi / 

–
Ai = 1 to an asymptote of 100% at 

larger values of 
–
Ai / 

–
Bi or 

–
Bi / 

–
Ai. Figure 2 also illustrates how alternative 

normalization methods (for AFX, alternative data reduction methods 
of the individual features) affect the quantitative outcome. For example, 
the data from the different test sites for AG1 show distinct behaviors 
under the standard normalization, but exhibit much more similar 
titration behaviors when normalized using the alternative method. In 
addition, for the AFX data, GCRMA processing26 (a modified version 

A

C D

B

75% A
+

25% B

25% A
+

75% B

Independent samples

Titration samples

Figure 1  RNA samples. We used expression measurements from two 
independent total RNA samples, A and B, and mixtures of these two 
samples at defined ratios of 3:1 (C) and 1:3 (D). The titration mixtures were 
generated once for all experiments, with samples A and B at equal total RNA 
concentrations as determined by A260.
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of robust multichip analysis (RMA) processing that models intensity 
of probe level data as a function of GC content) results in titration 
curves with a broader spread than those produced by probe logarithmic 
intensity error (PLIER)21 or RMA18. It should be noted that the differ-
ent data processing techniques also yield different numbers of genes 
showing significant deviations in expression values between samples 
A and B (Fig. 2 and Table 1), which can also influence titration per-
formance. The most striking differences resulting from normalization 
techniques are seen with the ILM data, where the alternative method, 
invariant scaling, resulted in many fewer significant genes on the left 
side of the panel as well as lower percentages of genes that titrate at 
lower-fold changes.

The quantitative differences between the various curves shown 
in Figure 2 are listed in Table 1, which presents the ratios at which 
50%, 75% or 90% of the detected genes show a monotonic titration 
response. The performances observed for different sites and platforms 
were similar but not identical (Table 1). Many different platforms and 
sites identified the correct ordering of the titration samples for more 
than 90% of genes with twofold difference between A and B (Table 1, 
rows 14 and 17), which suggests that the DNA microarrays can reli-
ably distinguish very small-fold differences in the mixture samples. The

differences resulting from alternative normalization techniques are also 
apparent in the results presented in Figure 2 and Table 1.

Measuring titration response as a function of signal intensity
To further explore the impact of different normalization techniques, we 
assessed titration response as a function of signal intensity. In Figure 3, 
we plot the fraction of genes that titrate relative to the total number 
of genes in the given intensity range, as a function of the lowest signal 
in the monotonic titration trend. That is, for the monotonic trend 
–
Ai > 

–
Ci > 

–
Di > 

–
Bi, we plotted this fraction against the signal intensity 

–
Bi 

(solid lines), whereas for the opposite trend 
–
Bi > 

–
Di >

–
 
–
Ci > 

–
Ai, we used 

the intensity 
–
Ai (dashed lines). We observed that, in general, the fraction 

of genes that titrate is inversely proportional to the signal intensity. The 
signal plotted on the x-axis is the lowest signal in the series; therefore, 
when this signal is low, the probes are more likely to show the expected 
titration response, as the fold differences will tend to be larger. When 
the magnitude of this lowest signal increases, the possible fold difference 
between A and B will decrease.

Differences in distribution among platforms and normalization 
methods are evident. For ABI, the fraction of genes that titrate follows 
the same trend as for the other platforms when A > B (Fig. 3, solid lines), 
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Figure 2  Percentage of genes showing the monotonic titration responses 
–
Ai > 

–
Ci > 

–
Di > 

––
Bi and 

–
Bi > 

–
Di >

–
 
–
Ci > 

–
Ai plotted against the linear 

–
Ai / 

–
Bi and 

–
Bi / 

–
Ai 

ratios, respectively, for each commercial whole-genome microarray platform, using various normalization methods. All graphs were generated from the set of 
12,091 genes common across whole-genome platforms, with outlier arrays excluded per manufacturer’s recommendations13. Genes detected across all four 
samples per site that were also significantly differentially expressed (P < 0.001) in independent samples A and B were used in the calculations (Table 1, rows 
4 and 5). A two-sample t-test, with equal variance, was performed within each site on log2 expression values. For each platform, a 100-probe moving window, 
based on sorted 

–
Ai / 

–
Bi ratios (left side of plot) or 

–
Bi / 

–
Ai ratios (right side of plot), was used to calculate the percentage of self-consistent monotonic titration 

response genes (y-axis) as a function of the corresponding moving average of 
–
Ai / 

–
Bi or 

–
Bi / 

–
Ai ratios (x-axis) within each site. Graphs are plotted with a scale 

break between –1 and 1, with reassignment of the x-axis for clarity. Each graph contains six series of data points (three sites in two monotonic directions), 
which were smoothed using a distance-weighted least-squares method. Blue, site 1; red, site 2; gray, site 3. Total number of genes showing the monotonic 
trend for each site are indicated in each graph, for both directions (

–
Ai > 

–
Ci > 

–
Di > 

––
Bi for 

–
Ai / 

–
Bi ratios >1 and 

–
Bi > 

–
Di >

–
 
–
Ci > 

–
Ai  for 

–
Bi / 

–
Ai ratios >1), and are also 

listed in Table 1 (rows 4 and 5). The normalization methods highlighted in yellow for each platform represent the manufacturer’s recommended method used 
in the MAQC main paper13.
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Table 1  Gene counts for AFX and ABI (top) and AG1, GEH and ILM (bottom) for each normalization method

Quantile Scaling PLIER MAS 5.0 RMA GCRMA

Row Condition ABI_1 ABI_2 ABI_3 ABI_1 ABI_2 ABI_3 AFX_1 AFX_2 AFX_3 AFX_1 AFX_2 AFX_3 AFX_1 AFX_2 AFX_3 AFX_1 AFX_2 AFX_3

1 Detected in A · B · C · D 8,049 7,863 8,550 8,049 7,863 8,550 7,359 7,006 7,424 7,359 7,006 7,424 7,359 7,006 7,424 7,359 7,006 7,424

2 A > B 4,284 4,191 4,509 4,308 4,219 4,424 4,423 4,291 4,557 4,244 4,040 4,267 4,414 4,192 4,440 4,356 4,125 4,376

3 B > A 3,765 3,672 4,041 3,741 3,644 4,126 2,936 2,715 2,867 3,115 2,966 3,157 2,945 2,814 2,984 3,003 2,881 3,048

4 A > B and P < 0.001 3,144 2,298 3,046 3,143 2,376 3,037 3,723 3,632 3,848 2,982 2,934 3,168 3,559 3,491 3,670 3,420 3,273 3,490

5 B > A and P < 0.001 2,572 1,886 2,436 2,571 1,930 2,494 2,356 2,176 2,306 2,074 1,999 2,182 2,272 2,274 2,372 2,224 2,172 2,303

6 A > C > D > B 3,063 2,924 3,159 3,296 3,104 3,256 3,042 3,751 3,616 2,493 3,111 3,258 2,862 3,462 3,479 2,708 3,297 3,407

7 B > D > C > A 2,471 2,424 2,622 2,670 2,487 2,772 1,924 2,154 2,222 1,873 2,089 2,170 1,858 2,100 2,087 1,829 2,071 2,075

8 A > C > D > B and P < 0.001 2,806 2,169 2,740 2,960 2,285 2,807 2,938 3,520 3,517 2,290 2,772 2,966 2,772 3,305 3,365 2,581 3,092 3,227

9 B > D > C > A and P < 0.001 2,240 1,803 2,198 2,355 1,844 2,312 1,869 2,038 2,132 1,696 1,834 1,951 1,781 2,020 2,015 1,720 1,931 1,956

10 (A > C > D > B) / (A > B) 0.71 0.70 0.70 0.77 0.74 0.74 0.69 0.87 0.79 0.59 0.77 0.76 0.65 0.83 0.78 0.62 0.80 0.78

11 (B > D > C > A) / (B > A) 0.66 0.66 0.65 0.71 0.68 0.67 0.66 0.79 0.78 0.60 0.70 0.69 0.63 0.75 0.70 0.61 0.72 0.68

12 50% titrate when A/B = 1.35 1.35 1.36 1.28 1.32 1.32 1.30 1.13 1.20 1.52 1.28 1.30 1.40 1.18 1.25 1.60 1.28 1.32

13 75% titrate when A/B = 1.58 1.65 1.65 1.45 1.60 1.60 1.65 1.20 1.30 1.98 1.45 1.50 1.70 1.32 1.42 2.05 1.47 1.58

14 90% titrate when A/B = 1.80 1.98 1.99 1.68 1.90 1.94 2.10 1.30 1.52 3.00 1.67 1.78 2.10 1.42 1.61 2.80 1.68 1.85

15 50% titrate when B/A = 1.43 1.42 1.45 1.34 1.35 1.40 1.39 1.20 1.22 1.53 1.30 1.36 1.44 1.22 1.30 1.63 1.35 1.47

16 75% titrate when B/A = 1.77 1.80 1.88 1.60 1.75 1.83 1.68 1.37 1.38 1.82 1.45 1.52 1.75 1.40 1.50 2.22 1.65 1.80

17 90% titrate when B/A = 2.08 2.23 2.40 1.85 2.12 2.30 2.05 1.49 1.50 2.50 1.75 1.87 2.15 1.58 1.68 2.90 2.10 2.30

18 A/B > 2.00 1,794 1,664 1,830 1,813 1,718 1,808 1,703 1,602 1,832 1,759 1,548 1,756 1,693 1,468 1,702 2,178 2,062 2,255

19 B/A > 2.00 1,636 1,562 1,745 1,634 1,548 1,793 1,171 1,028 1,136 1,360 1,202 1,346 1,172 1,017 1,141 1,462 1,378 1,501

20 A/B > 2.00 (P < 0.001) 1,772 1,558 1,802 1,793 1,626 1,782 1,703 1,602 1,832 1,732 1,542 1,748 1,693 1,468 1,700 2,168 2,049 2,233

21 B/A > 2.00 (P < 0.001) 1,613 1,423 1,672 1,612 1,435 1,716 1,171 1,028 1,136 1,350 1,195 1,335 1,171 1,017 1,141 1,447 1,365 1,487

Median scaling 75th % scaling Median scaling Quantile Quantile Invariant scaling

Row Condition AG1_1 AG1_2 AG1_3 AG1_1 AG1_2 AG1_3 GEH_1 GEH_2 GEH_3 GEH_1 GEH_2 GEH_3 ILM_1 ILM_2 ILM_3 ILM_1 ILM_2 ILM_3

1 Detected in A · B · C · D 8,322 8,468 9,121 8,322 8,468 9,121 10,416 10,505 10,289 10,416 10,505 10,289 7,995 7,761 7,555 7,995 7,761 7,555

2 A > B 5,046 4,922 5,051 4,624 4,705 5,027 6,324 6,537 6,161 6,173 6,275 6,123 4,505 4,349 4,221 3,670 3,512 3,009

3 B > A 3,276 3,546 4,070 3,698 3,763 4,094 4,092 3,968 4,128 4,243 4,230 4,166 3,490 3,412 3,334 4,325 4,249 4,546

4 A > B and P < 0.001 3,711 3,763 3,710 3,443 3,624 3,807 3,998 4,753 4,393 4,042 4,582 4,512 3,657 3,289 2,808 2,868 2,479 1,769

5 B > A and P < 0.001 2,057 2,439 2,839 2,447 2,707 2,958 2,238 2,352 2,632 2,409 2,586 2,772 2,713 2,473 2,051 3,384 3,068 2,960

6 A > C > D > B 4,249 3,714 2,923 3,430 3,218 3,460 4,413 4,314 4,381 4,637 4,308 4,917 3,204 3,170 2,924 2,097 1,945 1,989

7 B > D > C > A 2,304 2,357 2,848 2,384 2,377 2,703 2,167 2,230 2,258 2,718 2,653 2,833 2,198 2,153 2,059 3,426 3,221 3,697

8 A > C > D > B and P < 0.001 3,654 3,435 2,697 3,138 3,048 3,254 3,809 4,063 4,034 3,902 3,977 4,352 3,128 3,002 2,543 1,981 1,755 1,542

9 B > D > C > A and P < 0.001 1,977 2,168 2,589 2,164 2,256 2,538 1,918 2,008 2,091 2,251 2,326 2,496 2,136 2,038 1,792 3,152 2,882 2,900

10 (A > C > D > B) / (A > B) 0.84 0.75 0.58 0.74 0.68 0.69 0.70 0.66 0.71 0.75 0.69 0.80 0.71 0.73 0.69 0.57 0.55 0.66

11 (B > D > C > A) / (B > A) 0.70 0.66 0.70 0.64 0.63 0.66 0.53 0.56 0.55 0.64 0.63 0.68 0.63 0.63 0.62 0.79 0.76 0.81

12 50% titrate when A/B = 1.24 1.35 1.60 1.38 1.48 1.43 1.34 1.45 1.40 1.25 1.38 1.25 1.32 1.30 1.34 1.52 1.55 1.32

13 75% titrate when A/B = 1.39 1.66 2.15 1.53 1.75 1.70 1.50 1.70 1.53 1.40 1.62 1.38 1.50 1.49 1.54 2.08 2.08 1.65

14 90% titrate when A/B = 1.55 2.09 3.20 1.68 2.02 2.02 1.65 1.95 1.66 1.60 1.95 1.55 1.65 1.70 1.72 2.72 2.80 2.15

15 50% titrate when B/A = 1.39 1.45 1.40 1.52 1.57 1.48 1.46 1.44 1.51 1.30 1.35 1.30 1.44 1.45 1.41 1.26 1.30 1.25

16 75% titrate when B/A = 1.76 1.87 1.70 1.90 1.92 1.87 1.65 1.65 1.70 1.50 1.58 1.50 1.74 1.81 1.69 1.42 1.47 1.47

17 90% titrate when B/A = 2.30 2.60 2.05 2.50 2.35 2.33 1.87 1.85 1.88 1.72 1.80 1.72 2.00 2.14 1.93 1.65 1.70 1.75

18 A/B > 2.00 2,570 2,435 2,284 2,179 2,236 2,262 2,363 2,772 2,640 2,216 2,522 2,570 1,620 1,602 1,446 1,377 1,298 1,063

19 B/A > 2.00 1,556 1,714 1,901 1,790 1,843 1,916 1,351 1,351 1,453 1,373 1,432 1,451 1,382 1,371 1,254 2,008 1,969 2,227

20 A/B > 2.00 (P < 0.001) 2,504 2,393 2,249 2,136 2,197 2,227 2,339 2,757 2,616 2,200 2,508 2,545 1,620 1,602 1,430 1,377 1,290 1,045

21 B/A > 2.00 (P < 0.001) 1,458 1,673 1,883 1,672 1,802 1,901 1,340 1,347 1,443 1,356 1,427 1,437 1,382 1,365 1,238 2,004 1,942 2,146

Row 1 lists the number of genes detected in all four samples for each platform, separated by site. Rows 2 and 3 represent the number of concordantly detected genes for 
–
A > 

–
B 

and 
–
B > 

–
A, respectively. The sum of rows 2 and 3 for each column is identical to the gene count in row 1. Rows 4 and 5 represent the number of concordantly detected, statistically 

significant (P < 0.001) genes for 
–
A > 

–
B and 

–
B > 

–
A. Rows 6 and 7 represent the number of detected genes that show the monotonic titration trends 

–
A > 

–
C > 

–
D > 

––
B and 

–
B > 

–
D >

–
 
–
C > 

–
A. 

Rows 8 and 9 represent the number of statistically significant (P < 0.001), concordantly detected genes that show the monotonic titration trends 
–
A > 

–
C > 

–
D > 

––
B and 

–
B > 

–
D >

–
 
–
C > 

–
A. 

The statistical test used was a two-sample t-test, using equal variance, calculated within each site and comparing log2 expression values between the independent samples A and 
B. The gene counts in rows 8 and 9 are also indicated in Figure 2 for each monotonic direction. Rows 10 and 11 translate the previous rows into percentages of genes showing the 
monotonic titration trend. Rows 12–17 summarize Figure 2 for three specific y-axis values (50%, 75% and 90% of genes titrate at the listed average fold changes). Rows 18 and 
19 show the numbers of genes for which 

–
A / 

–
B > 2 and 

–
B / 

–
A > 2. Rows 20 and 21 show the numbers of statistically significant (P < 0.001) genes used to create the box plots in 

Figure 4. Columns highlighted in blue, for each platform, represent the manufacturer’s recommended normalization methods used in the main MAQC paper13. More detailed gene 
counts with cross-site intersections can be found in Supplementary Table 1 online.
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but when B > A (dotted lines), these data show a sudden increase in that 
fraction at high intensity. This effect, although still present, is much less 
distinct for the scaled than for the quantile-normalized data. We saw 
improved reproducibility among sites and concordance between the 
two titration trends in the AG1 75th percentile scaling relative to the 
median scaling. For the AFX-PLIER data, the signal range across which 
a titration response is elicited is smaller than for the other platforms 
and normalization methods, possibly owing to the variance stabilization 
used in the PLIER method. In all cases, the AFX data show lower percent-
ages for site 1, as in Figure 2. For the GEH data, median normalization 
results in a very clear distinction between the two different titration 
patterns; this distinction is moderated by quantile normalization. The 
data for the ILM rank invariant scaling indicate a larger number of 
genes showing the titration response 

–
Bi > 

–
Di >

–
 
–
Ci > 

–
Ai than showing the 

opposite trend, a result not seen for any other platform or normaliza-
tion method. Unlike in Figure 2, the percentage of titrating genes never 
reaches 100% because, at all signal ranges, some genes show only very 
small differences in expression across the samples and are more likely to 
yield a near-random ordering in their titration responses.

Analysis of titration mixtures
An underlying assumption for this study was that the proportions of 
each mRNA in the mixture samples (C and D) from each of the original 
samples (A and B) are equivalent to the mixing proportions of the total 
RNA. For this assumption to be true, the fractions of each mRNA in the 
total RNA samples A and B had to be the same and had to be processed 
by the various biochemical systems with equal efficiencies. Using math-
ematical modeling, we investigated whether we could derive the relative 
mRNA contents of the two independent samples using the microarray 
data from the independent and titration samples (see Methods). Such 

modeling defines the true fractions of mRNA derived from sample A 
in titration samples C and D as αC and αD, and the true fractions of 
mRNA derived from sample B in titration samples C and D as βC and 
βD (see Box 1 and Supplementary Fig. 5). Figure 4 shows the results of 
this modeling for all the platforms and normalization methods, with 
the y-axes representing the estimates of βC (bottom) and βD (top). The 
lower charts show median values of βC centered on 0.18 but usually 
larger for 

–
Ai > 

–
Bi (left) than for 

–
Bi > 

–
Ai  (right), and the upper charts 

show median values of βD centered on 0.67. These deviations from the 
expected values of 0.25 and 0.75 based on the 3:1 mixtures of total RNA 
suggest that the mRNA concentrations of the A and B samples were not 
identical. From these results, we estimate the mRNA concentration in 
the B sample to be approximately two-thirds of the concentration in 
the A sample (see Box 1). An empirical evaluation of mRNA content 
in samples A and B is consistent with our estimates of 3% and 2%, 
respectively (see Methods).

The values calculated from the different platforms and normaliza-
tion methods are generally similar, with two clear exceptions. For ILM, 
invariant scaling results in much lower estimates for βC and βD than the 
other platforms and normalization methods when A > B (left side) but 
not when B > A. This difference is consistent with the results noted for 
the titration response (Figs. 2 and 3). For ABI, the estimates of βC and 
βD are consistent with the other platforms when A > B but lower than 
the other platforms when B > A. This result was seen with both nor-
malization methods, although to different extents, and may be related 
to the differences noted in Figure 3. The deviations for βC and βD are 
particularly noteworthy because of the relatively small errors of the ABI 
data in this analysis.

The individual microarray measurements for the titration coefficients 
shown in Figure 4 indicate that normalization and data-processing 
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Figure 3  Impact of normalization on the distributions of titrating genes as a function of signal intensity. Fractions of genes showing the monotonic titration 
responses 

–
Ai > 

–
Ci > 

–
Di > 

––
Bi and 

–
Bi > 

–
Di >

–
 
–
Ci > 

–
Ai  are plotted against 

–
Bi (solid line) and 

–
Ai (dashed line), respectively. Histograms in each panel represent data 

from a different platform and normalization technique, separated by site and direction. Normalization methods highlighted in yellow for each platform are the 
manufacturer’s recommended method used in the MAQC study. Blue, site 1; red, site 2; gray, site 3. The data for these graphs were generated from the set of 
12,091 genes common across the platforms that were significantly differentially expressed (P < 0.001) in samples A and B and detected in all four samples 
(Table 1, rows 4 and 5). All data are plotted on the same scale: the x-axis is normalized signal in log2 units and the y-axis shows the fraction of titrating 
probes relative to the total number of probes in the given intensity range. Bin centers are 0.5 apart on the log2 scale. To avoid spurious oscillations in the 
lowest and highest signal intensities, we plotted only bins with more than ten genes. Differences between normalization techniques are demonstrated by the 
differing signal ranges within a platform for the monotonic titration response. The normalization methods highlighted in yellow for each platform represent 
the manufacturer’s recommended method used in the MAQC main paper13.
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differences are not the primary cause for the deviations from the theo-
retical values. Differences in mRNA abundance contribute to these 
deviations and may not be circumvented with normalization alone. 
Additionally, further analysis of microarray measurements from these 
titration mixtures may provide greater-resolution observations of the 
global tendency (Fig. 4) of estimates of βC and βD to be larger for A > 
B than for B > A (see Supplementary Fig. 1 online).

Effects of outlier data
During execution and analysis of the MAQC study, the consortium iden-
tified one outlier site and multiple outlier arrays on the basis of objective 
criteria of data quality13. In some cases, we evaluated the effects of not 
censoring such data from the analysis. The results (data not shown) 
were as expected: inclusion of low-quality data degraded both intra- and 
intermethod reproducibility. This result, although predictable, is none-
theless noteworthy because microarray experiments are expensive and 
are sometimes used to analyze samples that are available in very limited 
quantities. Low-quality microarray data are discarded with great pain. 
It is therefore important that the community develop shared standards 
of microarray data quality to allow use and interpretation of less-than-
perfect data while preventing overinterpretation. The well-character-
ized RNA samples and all of the data (including outliers) produced 
by the MAQC study are a good start on the road to such data-quality 
standards. In particular, the titration experimental design used in this 
work may prove to be an important tool for developing such standards, 
as the experiments can be interpreted using a small number of plausible 
assumptions.

DISCUSSION
The MAQC titration study was conceived as an experiment that could 
be implemented across several platforms, with a minimum of assump-
tions. One of the initial goals of the titration study was to assess relative 
accuracy by comparing observed expression in the titration samples 
with the expression expected on the basis of the known mixing ratios 

of the two independent samples. This analysis proved to be more com-
plex than originally anticipated, largely owing to the effects of different 
mRNA fractions in the two independent samples. However, the qualita-
tive expectation of a particular signal ordering is still valid and provides 
a sensitive tool for differentiating microarray platform performance and 
normalization methods. As the measurement of titration response illus-
trates, different platforms and data analysis methods have slightly dif-
ferent performance optima: design and processing choices that increase 
the number of detected genes also tend to increase noise in the titration 
series. In addition to differences in the number of genes analyzed, the 
variations seen in Figure 2 and Table 1 can also result from differences 
in expression-ratio compression (leading to different ratios observed for 
any given gene) as well as levels of noise in each measurement. In general, 
the behaviors of various sites and platforms are quite similar.

The analysis of the titration mixtures reveals some interesting obser-
vations about the data. These results show asymmetry in the titration 
responses (Figs. 2 and 3) and the estimates of the true fractions of mRNA 
in the titration samples (Fig. 4). This asymmetry may be caused in part 
by additional differences in the normalization of the A and B samples 
(Supplementary Fig. 1), may relate to more difficulty in distinguishing 
A and C at low signal or may be a consequence of nonlinearity in the 
signal response relative to the concentration amounts (Supplementary 
Fig. 2 online). In addition, the results presented here demonstrate that 
the mRNA content of the two independent samples is not equal. This 
conclusion is supported by additional lines of evidence. First, an appar-
ent power analysis27–30 (Supplementary Figs. 3 and 4 online) is asym-
metric between the sample pairings (A, C) and (B, D). This asymmetry 
is probably the result of the A sample being more similar to C than B is 
to D. Second, the slopes of the linear trends for the titration sample/inde-
pendent sample ratios (Supplementary Fig. 1) suggest that the ratio of 
sample A to B in sample C differs from the expected value from the total 
RNA ratios. Third, external spike-in RNA controls were included for sev-
eral platforms; these controls were amplified and labeled along with the 
sample RNA and indicate that the A sample contains a higher percentage 

Box 1  Modeling of titration mixtures
Ideally, the mRNA expression levels of each gene in samples C and 
D may be mathematically expressed as 

C = αCA + βCB and D = αDA + βDB, 

where A and B are the measured mRNA abundances of the gene 
in samples A and B, respectively, and αC, βC, αD and βD 

are the 
mixture coefficients. If we impose the requirement that 

αC + βC =1
 and 

αD + βD = 1
 
(if A = B, then C = A = B = D), 

then elementary algebra can be used to derive simple formulas for 
βC and βD: 

βC = (C – A)/(B – A) 
and 

βD = (D – A)/(B – A). 

If the mRNA fractions in samples A and B are identical and the 
normalization of samples A, B, C and D exactly the same, then 
the measured fraction should be centered on the ideal mixture 
fractions of βC = 0.25 and βD = 0.75 (implying αC = 0.75 and 
αD = 0.25). However, different mRNA concentrations in the A and 
B samples and differences in the normalization of the four samples 

for different platforms, sites and normalization methods can lead 
to deviations from these expected values (Fig. 4). For example, 
if the mRNA fractions for the A and B samples (termed a and b, 
respectively) are unequal (a ≠ b), then 

C = ((0.75a)A + (0.25b)B)/(0.75a + 0.25b) 
and

D = ((0.25a)A + (0.75b)B)/(0.25a + 0.75b). 

We can express the true ratios of the B to A mRNA fractions,

b/a = 3βC/(1 – βC) = βD/3(1 – βD)

 (see Supplementary Fig. 5). Using the empirical measurements of 
βC and βD, we can then estimate these true mRNA fractions. For 
example, if the B fraction of sample C is βC ≈ 0.18, as indicated 
by microarray median values in Figure 4 (bottom), then we can 
deduce that the true ratio of mRNA fractions b/a is approximately 
2:3. Moreover, these results predict that 

βD = 9βC/(1 + 8βC) ≈ 0.67, 

which is consistent with the empirical microarray results in 
Figure 4 (top).
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of mRNA relative to the B sample31. Finally, a preliminary empirical 
analysis of mRNA content in the A and B samples (see Methods) con-
firmed that the mRNA content differs between the samples.

The discovery of a difference in the mRNA content of samples A and 
B has important implications for the future use of these commercially 
available samples in method calibration, proficiency testing and other 
activities requiring well-characterized, complex RNA. As a result of the 
MAQC study, these samples are probably the best-characterized complex 
RNA preparations available. The RNA-measurement community should 
complete the characterization of these samples by more accurately mea-
suring the fraction of mRNA in each preparation, so that the scientific 
community can make better use of this resource.

The utility of the titration samples for assessing normalization and 
data preprocessing methods can be seen throughout the analyses pre-
sented here. Notably, for all platforms except AFX and ILM, the perfor-
mance of the MAQC ‘standard’ normalization or data preprocessing 
method was slightly inferior to that of the secondary method, especially 
in the apparent power analysis (Supplementary Fig. 3). This result high-
lights the observation noted throughout this study that data process-
ing methods determined to be optimal under one set of circumstances 
may not always prove appropriate under all conditions, particularly if 
primary assumptions underlying those data processing methods are 
violated.

A great strength of the design presented here is that, despite the added 
complexities of varying mRNA content, the qualitative expectation of a 
particular signal ordering is still valid, provided that the different data 
sets are properly scaled relative to one another. Therefore, this design 
is very valuable for assessing microarray performance. Specifically, 
as we have shown here, the titration response can be used to distin-
guish between normalization methods that are sensitive to changes 
in mRNA fraction and methods that are robust despite such changes. 
One observation of this study is that the robustness of a normalization 

method depends in part on the subset of data used to determine the 
scaling constant or function. Our results indicate a path toward objec-
tive optimization of this normalization set. The differences in gene 
expression among samples may be greater and the variability across 
replicates may be smaller in this study than in typical biological experi-
ments; nonetheless, the lessons learned regarding the use of titration 
mixtures to evaluate the performance and normalization of large-scale 
gene-expression measurements may have widespread application in 
more realistic settings. In addition, the wide range of gene expression 
in these samples probably served to amplify data processing–derived 
differences that would have been more difficult to detect in analyses of 
more closely matched samples.

Finally, it should be noted that the majority of genes considered here 
yielded very similar behavior across all platforms, in spite of the com-
plications noted in this manuscript. Therefore, these results should be 
considered a testament to the underlying strength of all of the methods 
examined. Improvement of mRNA quantification methods remains an 
important objective, and the MAQC study has produced samples and 
data that will aid the community in making such improvements. The con-
cordance of data presented here demonstrate that the methods used are 
sound and, when properly implemented and interpreted, can be used to 
measure expression levels of thousands of RNA targets simultaneously.

METHODS
Preparation of the RNA sample titrations. RNA samples are described in detail 
in the main MAQC paper13. Briefly, two commercially available total RNA solu-
tions and 3:1 and 1:3 mixtures were chosen at the outset by the members of the 
MAQC project. For simplicity, these samples were designated as A, B, C and D. A 
and B are independent total RNA samples. A is derived from a collection of ten 
human cell lines and B from human brain tissue. Sample A is sold commercially 
under the name Universal Human Reference RNA (Catalog number 740000, 
Stratagene). Sample B is sold commercially under the name FirstChoice Human 
Brain Reference RNA (Catalog number 6050, Ambion).
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Figure 4  Titration-response concordance for each commercial whole-genome microarray platform, using different normalization methods, with data from 
each platform separated by site and fold-change direction. Data shown are from the 12,091 genes common across whole-genome platforms. Box plots 
were generated in cases where a gene was detected across all samples per site and had a statistically significant (P < 0.001) A/B ratio >2 in the direction 
indicated. A two-sample t-test, with equal variance, was performed within each site on log2 expression values. Data for each site were split by direction of fold 
change: left, genes where A/B > 2; right, genes where B/A > 2 (all differences significant, P < 0.001, for both directions). Number of genes used for each box 
plot is indicated by individual site counts in Table 1 (rows 20 and 21). Each box represents the interquartile range, with median marked by a horizontal black 
line and 10th and 90th percentiles marked by the outer whiskers. Blue, site 1; red, site 2; gray, site 3. The horizontal dashed black lines represent expected 
values assuming 3% and 2% mRNA abundance levels for samples A and B, respectively. In other words, when the mRNA/total RNA fraction in A is equal to 
3% and in B is equal to 2%, then βC = (C – A)/(B – A) = 0.18 (bottom two charts) and βD = (D – A)/(B – A) = 0.67 (top two charts). Refer to Box 1 for further 
details. Normalization methods highlighted in yellow for each platform represent the manufacturer’s recommended method used in the MAQC main paper13.
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RNA titration samples were generated once for all MAQC experiments (Fig. 1), 
with samples A and B at equal concentrations as measured by A260. Sample C was 
made by mixing sample A with sample B at a volumetric ratio of 75:25, and sample 
D was made by mixing sample A with sample B at a volumetric ratio of 25:75.

Normalization methods used in this study. For ABI, we used quantile normaliza-
tion17 independently for each test site and 90% trim mean scaling. For trim mean 
scaling, the signals for highest 5% and lowest 5% are removed, and the remaining 
90% of signals are used to calculate the mean. The mean of each array is scaled 
to the same level, and the scaling factor for each array is used to scale the signals. 
The trim mean scaling was calculated independently for each test site.

For AG1, the data were transformed so that signal values below 5 were set to 
5. After this transformation, each measurement was divided by the median of 
all detected measurements in that sample (for median scaling) or by the 75th 
percentile of all measurements in that sample (for 75th percentile scaling).

For AFX data, we used PLIER21, MAS 5.0, RMA18 and GCRMA27 for data 
preprocessing and normalization. The PLIER method produces a summary value 
for a probe set by accounting for experimentally observed patterns in feature 
behavior and handling error appropriately at low and high abundance. PLIER 
accounts for the systematic differences between features by means of parameters 
termed feature responses, using one such parameter per feature (or pair of fea-
tures, when using mismatch (MM) probes to estimate cross-hybridization signal 
intensities for background). Feature responses represent the relative differences 
in intensity between features hybridizing to a common target. PLIER produces a 
probe-set signal by using these feature responses to interpret intensity data, apply-
ing dynamic weighting by empirical feature performance and handling error 
appropriately across low and high abundances. Feature responses are calculated 
using experimental data across multiple arrays. PLIER also uses an error model 
that assumes error is proportional to the observed intensity rather than to the 
background-subtracted intensity. This ensures that the error model can adjust 
appropriately for relatively low and high abundances of target nucleic acids. Here, 
PLIER was run with the default options (quantile normalization and PM-MM) 
with the addition of a 16 offset to each expression value13.

The AFX MAS 5.0 algorithm is a method for calculating probe-set signal 
values. The MAS 5.0 algorithm is implemented on a chip-by-chip basis and is 
not applied across an entire set of chips. The signal value is calculated from the 
background-adjusted PM and MM values of the probes in the set using a robust 
biweight estimator. Here, MAS 5.0 is implemented with default options, and 
global scaling (96% trim mean) is used for normalization.

RMA18 fits a robust linear model to the probe-level data and conducts a mul-
tichip analysis. The algorithm includes a model-based background correction, 
quantile normalization and an iterative median polishing procedure to generate 
a single expression value for each probe set. GCRMA substantially refines the 
RMA algorithm by replacing the model for background correction with a more 
sophisticated computation that uses each probe’s sequence information to adjust 
the measured intensity for the effects of nonspecific binding, according to the 
different bond strengths of the two types of base pairs. It also takes into account 
the optical noise present in data acquisition. Both RMA and GCRMA were imple-
mented using the ArrayAssist Lite package with default settings (Affymetrix; 
http://www.affymetrix.com/products/software/specific/arrayassist_lite.affx).

For GEH data, we compared median scaling and quantile normalization. For 
the median-scaling approach, each measurement was divided by the median 
of all measurements within each array. Therefore, the median signal is scaled 
to 1 for each array. The quantile normalization approach16 was applied to 
log2-transformed expression values across all samples and replicates within 
each site.

For ILM data, we compared quantile normalization16 with the addition of 
15 counts of offset to each probe signal13 and normalization by a robust least-
squares fit of rank-invariant genes. For the latter normalization method, array 
data corresponding to sample A were averaged and used as a reference on each 
site independently. Signals from each array in the experiment were compared 
to the reference, and probes with relative rank changes of less than 5% (only 
probes ranked between the 50th and 90th percentiles were included) were con-
sidered to be rank invariant. Normalization coefficients were computed with 
iteratively reweighted linear least squares using the Tukey bisquare weight func-
tion. Background signal, estimated as the mean signal of negative controls, was 
subtracted before normalization. Each ILM array contains approximately 1,600 

negative control probes, which are thermodynamically equivalent to regular 
probes but do not have specific targets in the transcriptome. Gene signals were 
ranked relative to signals of negative controls, and the detection flag was set to 
present if gene signal exceeded 99% of signals of negative controls.

Purification of mRNA to empirically determine abundance in samples A and B. 
In a follow-up experiment, mRNA was isolated from 100 µg of samples A and B 
total RNA in duplicate using the Absolutely mRNA purification kit (Stratagene) 
according to the manufacturer’s protocol. Briefly, 50 µl of mRNA oligo (dT) 
magnetic particles were combined with 100 µl of total RNA and washed four 
times, and mRNA was eluted with 100 µl elution buffer. mRNA quantity and 
quality were evaluated by ND-1000 NanoDrop spectrophotometer (NanoDrop 
Technologies) and Agilent 2100 Bioanalyzer with RNA 6000 Nano LabChip Kit 
(Agilent Technologies). This empirical evaluation of mRNA content in each 
100 ng of total RNA produced an average yield of 2.870 ± 0.095 ng for sample A 
and 2.003 ± 0.124 ng for sample B (mean ± s.d.).

Note: Supplementary information is available on the Nature Biotechnology website.
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